

Parametric Mission Cost Model - Overview

Jet Propulsion Laboratory Pasadena, CA

> Leigh Rosenberg Kevin Roust

> > March 3, 2000

PMCM - Modeling Team

- L. Rosenberg
- J. Hihn
- K. Roust
- T. Roust
- K. Warfield
- Team X Subsystem Engineers

PMCM Status - Outline

- 1 Why build yet another model?
- 2- Model objectives
- 2 Current model status (including history)
- 3 Modeling approach
- 4 Database
- 5 Statistical basis
- 6 Model summary WBS, CERs
- 7 Validation procedure
- 8 Current & future activities

Why build yet another model?

The Old Days -- " 1990

- Non-competitive proposals (average cost per project "\$1B without L/V)
- 3-5 proposals (design/cost) per year
- No faster, better, cheaper
- No real cost caps
- Old cost models built to old mission style
- Questionable statistical validation of old models.

Today -- " 2000

- Competitive proposals i.e., Discovery, SMEX, ESSP, etc (average cost " \$75 300M with L/V)
- 60-100 proposals (design/cost) per year
- Faster, better, cheaper
- Real cost caps
- Defendable, accurate early cost estimates are very important -
 - -Modeling used as grass roots check & when detailed design data is not available
 - -Validation necessary
- Old cost models no longer applicable
- Outside cost models do not fit many JPL missions very well:
 - No real deep space cost data beyond Mars
 - JPL has missions to Mercury, Jupiter comets,
 Pluto, rovers, landers, sample return.

Why build yet another model?

Model Objectives

- The cost estimation community needs a model that:
 - Is fast, accurate, & consistent
 - Has a minimum of subjective inputs
 - Can be used for cost/performance trade analysis
 - Is defendable (approved by peers, good statistical basis, based on actual mission costs)
 - Can be used to identify proposal/design tall pole issues,
 - Can be used early in proposal cycle to identify proposal areas of strength & weakness, and as a sanity check on proposal cost estimates
 - Can be successfully integrated with other automated design tools
 - Can be used as a surrogate when proposal teams are over committed

Model Status - History

- PMCM (version 1) developed in 1997,8
 - Includes instrument model, S/C bus model, secondary CER models, future automated development process assumptions
 - In use for nearly 2 years including Team X, Discovery 98 Step 1 proposals
- Instrument model developed in 1996 (updated 98)
 - Based on 95 actual flown instruments
 - In use on JPL design teams (including Team X)
- Secondary CER models (project office, ATLO, MA&E) originally developed in 1996 to provide total project life cycle cost

Current Model Status

- PMCM (version 2) completed in 1999. Includes major updates to S/C bus & mission operations models.
- Model reflects JPL's new automated design process.
- Successfully implemented with other JPL automated design tools.
- The model is <u>close</u> to obtaining its objectives.
- The model is used by JPL's proposal design team.
- Year 2000 update is in progress. This includes a formal validation

- PMCM (version 2) CER update process
 - Collected, reviewed, & verified data
 - Identified key cost drivers (design parameters)
 - Developed CERs for each subsystem based on all available parameters (cost drivers)
 - Reviewed results with Team X subsystem engineers
 - Revised & developed system & mission cost models
 - Encoded model in Excel worksheet (visual basic language)
 - Model validation currently on-going

- Philosophy
 - Avoid mass as a dependent variable
 - Include key design parameters that are likely to be known in early stages of design (high level requirements)
 - Keep model as linear as possible to make parameter interpretation intuitive
 - Use of objective cost drivers, while minimizing use of subjective variables

Database

- Identified 55 potential data records & collected > 200 design parameters (e.g., high level parts lists, tech type, pointing knowledge, BOL power, etc.).
- Deleted incomplete and duplicate records.
- This yielded 43 complete data records based on Team X studies completed from March 97-October 98 that assumed JPL's new FBC development process.

Statistical Basis

- While significant outliers were identified & removed, the objective was to keep data records as consistent as possible across subsystems
- Used multivariate linear regression & selected cost variables based on causal engineering relationships &:
 - F-ratio > 10 (1% for 10 degrees of freedom), adj $R^2 > 75\%$, student t-ratio > 1.95 (5%)
 - Dropped variables whose direction was inconsistent with engineering principles
 - Kept some variables with low t-ratios if :
 - Variable was a major design parameter
 - Coefficient was consistent with expert engineering judgement

Model Summary - WBS

W o k B r ekalo wn Structure (W BS)	M del Forn			
To tal Project C sats (\$M)				
10 Proje of Manængent				
1.1 Proje & M a n æng& Staff	%			
1.2 Launch rAppp	List			
1.3 Pla netar yPr dection A p po v la	List			
1.4 Edu tioan & Public Otre ach	%			
20 Scien c eTe am				
30 Mission Doig n& Project Enigneering	%			
40 I near ume its				
4.1 Pay lood Man a genoe nt	%			
4.2 Pay 1 o d Engin e ri n g	%			
4.3 Instrument Burden & Fees	%			
4.4 I nstr ume nt I				
50 Space maft				
5.1 Primary Sp a coeaft	/			
5.2 Sta ge 2				
60 A TLO				
70 Mission O patéons & De v kopment				
80 Reseres	%			
90 Launch iMeeh	List			
1	List			

W daB r keb vn Structure (W B)	M del Fori			
50 S pc eraft	F 0 F 1			
5.1 Primary Sp a cra ft				
5.1 . 1S/CB u Man a gne n	%			
5.1 . 2S/CB u Sty tem E ning ering	%			
5.1 . 35/CB uB nd e & Fe e	%			
5.1 . Attitude Gitr dSubs stem	C IR			
5.1 . 5C onm ada of D a tHandling Subsystem	C IR			
5.1 . Po w Subs yte m	C IR			
5.1 . Pr pulsio rSubsy tem	C IR			
5.1 . Structur e & M ehanisms Subsy tem				
5.1 . Telec o usubsy tem				
5.1 . 1 Therm &Subs yte m				
5.1 . 1 M eh aic a Build-Up				
5.2 Sta g 2				
70 Missio n Orapioens & De vlopme n				
7.1 C o mand, T lemetr y & Mission Dta Mg nt				
7.2 N aig aidn	C IR			
7.3 E pe iment h Flight D ta Pr duc s	C IR			
7.4 Sequence Tagine eing, Scienc eOls e r tion Planning ,Gr and C annunic at as & Informatio n	C IR			
7.5 P rjo ¢Pr oi v led Ta ks	C IR			
7.6 A tenna Kareg	C IR			

Model Structure - CERs

~	
Cost Rement	St atistic ally Significa nt
	C ost Model Inputs
A CS	PointingKnokwedge
$(R^2 = 88.1 , F-ratio = 4.5.)3$	New Design
	D sig nCopy
	#of ASCHW Types
	# of Aucators
СТН	N oA utono my
$(R^2 = 62.3 ,F-ratio = 1.9)$	N umb er of Card s
	Proce ssor < 5ip0sm
Po w e r	Array Are a
$(R^2 = 95.7 , F-ratio = 129)$	Cell T y p
	N umb er of GPHS
	Batter yO nly
Pr qulsio n(C E R# 1)	C dd G as
$(R^2 = 72.7 \text{ ,F-ratio } = 2.7 \text{ .})7$	Hyda zin e
	HANTEAN
	Bi-PropDual Moed
	SEP
Pr quisio n(C E R# 2)	Ln (T dal Impulse)
$(R^2 = 81.6 , F-ratio = 218)$	
Structur & & M e hanisms	#of Meanism Typse
$(R^2 = 84.4 , F-ratio = 109)$	# of Meanilsms
Therm d C ont r b	D estin atio n- Sun/Mer c
$(R^2 = 83.0 , F-ratio = 47.)3$	La u n c M ass
	#of Istmr uments
	D estin atio nPressu r e

C st Rement	St distic ally Significant C ots
	M del Inputs
Telec o munic aions	Ln (D o wlimk D atarate)
$(R^2 = 89.0 \text{ ,F-ratio } 3 2 \text{ .)} 3$	A nte n n Diameter
	Ran g (SC-E atth)
	O ptic al
	Seconno yla UFH
	Seconro gla Xoand
	Mission Class
	Su b sstem Re d u n d a n c y
M ch anic a Build-Up	Space aft Dry Masa
$(R^2 = 82.2 \text{ ,F-ratio}^2 = 458)$	T V
A TLO	To all of Subsstem Co as
(Enigneneing Algoithm)	# of struments
	# of Stope reaft Eleme nts
GDS/MOS	# of strume nts
(Enigneneing Algoithm -	Satellite Tour Le n th
TM O Pricing Alg oithms)	A crobra kin gLe n th
	Taregt Bodrybi ODength
	Cruise Le n th
	Phaes A/B Lenteh
	Ph as C/D Le n th
	DSN Sch e dlea
	(# We k,sPass os/W e e, k
	Horus/Pass, Attenn)a

Model Summary - Example CER (Power)

- For each element of the power subsystem (power generation, energy storage, electronics), collected data on technology used and size of the element.
- Data was also collected on key system parameters (thermal environment, radiation total dose), mass by element, & cost by element total of 30 exogenous variables.
- Analyzed linear & log-linear forms as well as interactions between size and tech type
- Developed two models based on (1) array area and (2) beginning of life power
- Reviewed by Team X power subsystem engineers
- 2 outliers excluded -- unusual technologies (CIS array, thermal-mech-elec conversion)

Power Subsystem CER ($R^2 = 95.7\%$, F-ratio = 129)

Variable	Coefficient	t-ratio	Significance
Constant	\$5,477 K	6.25	< 0.0001
Battery Only	- \$4,149 K	-1.77	0.0887
Array Area (m ²) – Si	\$ 253 K	4.14	0.0004
Array Area (m ²) – GaAs	\$ 440 K	4.9	< 0.0001
Array Area (m ²) – Adv. Cells	\$ 445 K	22.8	< 0.0001
Number of GPHS	\$4,854 K	13.7	< 0.0001

Model Summary

- PMCM (version 2) has complete high level WBS containing "50 CERs. There were 15 new CERs in 1999.
- It produces a breakdown of life cycle cost results by phase including:
 - Formulation
 - Implementation
 - Operations
- Out of 200 design parameters identified & tested, 47 were found significant

- Review model structure (replicates project WBS)
- Review subsystem CER's with pertinent JPL engineers
- Tested version 1 vs. Discovery 98 proposals
- Currently testing version 2 & version 1 vs. actual missions/winning step 2 proposals (Genesis, Stardust, DS-1, MGS, Inside Jupiter, Deep Impact, Mars Pathfinder, Cloudsat, Cassini, Mars 98 (Orbiter & Lander))
- Peer review board evaluation

March 3, 2000

17

- Model structure replicates Team X design process and uses Team X WBS to determine total project cost.
- Project structure/flow that is modeled has been reviewed by Team X engineers and Team X customers over the last 5 years.
- Individual CER's have been reviewed & verified with pertinent JPL subsystem engineers.

Disc 98-Step 1 JPL Proposals (FY 98 \$M)

	Proposal	PMCM (ver 1)	
	Grass Roots	Total Project	
	Costs	Cost	±%
Deep Impact	204	254	25%
Gulliver	264	221	-16%
Hermes	267	301	13%
Hummingbird	260	249	-4%
Immpact	151	234	55%
Inside Jupiter	227	200	-12%
Janus	239	252	5%
Kitty Hawk	134	150	12%
Lunar Star	111	111	0%
MBAR	240	271	13%
MUADE	125	138	11%
New World Exp	267	269	1%
Quicksilver	276	287	4%
Vesat	191	212	11%
VEVA	269	242	-10%

• Version 1 did quite well (13 of 15 within $\pm 20\%$).

Validation of Version 2 - Test Cases vs Actuals & Step 2 Proposal Costs (FY 99 \$M)

Mission	Actual Cost	Ver. 1	±%	Ver. 2	±%
DS-1	195.4	207.0	5.9%	203.8	4.3%
Genesis	210.2	218.4	3.9%	221.7	5.5%
Stardust	201.6	178.5	-11.5%	187.9	-6.8%
MGS	229.3	260.6	13.7%	249.7	8.9%
Inside Jupiter	269.0	255.6	-5.0%	227.5	-15.4%
Deep Impact	243.0	324.1	33.4%	286.8	18.0%

Test case results look good

- Version $1 < \pm 20\%$ on 5 of 6 cases (a little better than Disc 98 Step 1)
- Version 2 <±20% on all 6 cases
- "Actuals" range is -7% to +9% -- closer fit than Version 1.
- 5 missions are being added

• Areas we are addressing in FY 2000 and in the near future

- Data set is being updated (current data is "1 year old)
- Detailed SW cost algorithm being developed
- Secondary CER's need review (i.e., project office, MA&E, sys eng)
- Participating within advanced PDC design team
- Instrument model to be updated (current model is 2 yrs old)
- Documentation started
- Risk, uncertainty, factors for new technologies
- Schedule vs. cost algorithm
- Probabilistic cost estimating tool
- To better meet customer requirements, other versions of model are needed (simplified version for earlier use, elements) vel, etc.)

March 3, 2000